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Abstract: The forward modeling of a scalar wave equation plays an important role in the numerical 7 

geophysical computations. The finite-difference algorithm in the form of a second-order wave equation is one 8 

of the commonly used forward numerical algorithms. This algorithm is simple and is easy to implement based 9 

on the conventional-grid. In order to ensure the accuracy of the calculation, absorption layers should be 10 

introduced around the computational area to suppress the wave reflection caused by the artificial boundary. 11 

For boundary absorption conditions, a perfectly matched layer is one of the most effective algorithms. 12 

However, the traditional perfectly matched layer algorithm is calculated using a staggered-grid based on the 13 

first-order wave equation, which is difficult to directly integrate into a conventional-grid finite-difference 14 

algorithm based on the second-order wave equation. Although a perfectly matched layer algorithm based on 15 

the second-order equation can be derived, the formula is rather complex and intermediate variables need to be 16 

introduced, which makes it hard to implement. In this paper, we present a simple and efficient algorithm to 17 

match the variables at the boundaries between the computational area and the absorbing boundary area. This 18 

new boundary matched method can integrate the traditional staggered-grid perfectly matched layer algorithm 19 

and the conventional-grid finite-difference algorithm without formula transformations, and it can ensure the 20 

accuracy of finite-difference forward modeling in the computational area. In order to verify the validity of our 21 

method, we used several models to carry out numerical simulation experiments. The comparison between the 22 

simulation results of our new boundary matched algorithm and other boundary absorption algorithms shows 23 

that our proposed method suppresses the reflection of the artificial boundaries better and has a higher 24 

computational efficiency. 25 

Keywords: seismic waves, boundary conditions, absorption, second-order wave equation, conventional-grid. 26 

1 Introduction 27 

Modeling of a seismic wave field is accomplished by simulating the pattern of the seismic waves as they 28 

propagate through various geologic media and computing the simulated measurements at observation points on 29 

the Earth’s surface or underground, given that the underground medium’s structure and the relevant physical 30 

parameters are known. Numerical modeling of a seismic wave field is an important tool for seismic data 31 

processing and interpretation and for geodynamic studies of the Earth’s interior. In recent years, many full 32 

waveform inversion methods have been widely proposed and applied to seismic exploration. In the waveform 33 

inversion process, wave field modeling is one of the key algorithms because it must be performed first to obtain 34 

the predicted wave field that is used to compute the residual errors between the predicted and the actual wave 35 
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field records. In addition, the information provided by the residual errors, which is required for refinement of 1 

the initial model, is actually calculated by a modeling algorithm that uses the residual errors as virtual sources. 2 

After many iterations of the above processes, an optimized approximate model of the underground medium can 3 

be acquired. Numerical modeling of a wave field will be executed thousands of times throughout the waveform 4 

inversion process, so a wave field modeling algorithm is crucial in many ways when performing a waveform 5 

inversion algorithm, such as computational precision, speed, and storage requirements. 6 

The main numerical techniques for seismic wave field modeling include the finite-element method 7 

(Marfurt, 1984; Yang et al., 2008), the pseudo-spectral method (Kreiss and Oliger, 1972; Dan and Baysal, 1982), 8 

and the finite-difference method (Kelly et al., 2012; Virieux, 1984; Yang et al., 2002; Moczo et al., 2007; Zhang 9 

et al., 2013). Due to its easy implementation and the satisfactory compromise between accuracy and efficiency, 10 

the finite-difference method is the preferred method. For a comprehensive overview of applications of the finite-11 

difference methods, see Moczo et al. (2014). Over the last several decades, many studies have focused on 12 

determining the coefficients of the finite-difference method and designing computational templates (Liu et al., 13 

2017). 14 

According to the formulation of the wave equations, the finite-difference methods can be implemented 15 

based on the first-order velocity-stress equations or the second-order displacement equations, which lead to 16 

different computational templates. A staggered-grid (SG) is usually set up for the first-order wave equations 17 

and has been widely used with the acoustic and elastic wave equations (Virieux, 1984; Moczo et al.,2014; 18 

Madariaga, 1976; Virieux, 1986; Gold et al.,1997; Saenger et al., 2000; O’Brien, 2010). Many methods of 19 

optimizing the differential coefficients, based on a SG, have been proposed to increase the accuracy of the 20 

numerical solution, such as the time-space domain dispersion-relation-based method (Liu and Sen, 2011), the 21 

simulated annealing algorithm (Zhang and Yao, 2013), and the least-squares method (Yang et al., 2015). 22 

However, a conventional-grid (CG) is also often directly obtained from the second-order wave equation. These 23 

methods include the central scheme (Alford et al., 1974; Igel et al., 1995), the high-order compact finite-24 

difference method (Fornberg, 1990), the Lax-Wendroff correction (LWC) scheme (Lax and Wendroff, 1964; 25 

Dablain, 1986; Blanch and Robertsson, 2010), the nearly analytical discrete method (Yang et al., 2003), and the 26 

nearly analytical central difference method (Yang et al., 2012). The algorithm design of the CG scheme is easier 27 

to use than that of the SG scheme because the variable definition is uniform throughout the grid. However, it is 28 

not easy to determine which of the two schemes is more accurate and efficient. Although the SG scheme has 29 

sometimes been regarded as more precise than the CG scheme (Huang and Dong, 2009), there is also some 30 

theoretical and experimental proof in the literature that does not support this proposition. Moczo et al. (2011) 31 

compared the accuracy of the different finite-difference schemes with respect to the P-wave to S-wave speed 32 

ratio using theoretical analysis and numerical experiments. Their investigation determined that the relative local 33 

errors of the CG scheme are almost equal to those of the SG scheme when modeling planar S waves propagating 34 

in an unbounded homogeneous elastic isotropic medium with a low P-wave to S-wave speed ratio (Vp/Vs=1.42). 35 

They determined that only at higher P-wave to S-wave speed ratios (Vp/Vs=5,10) will the relative local error 36 

of the CG scheme increase faster than that of the SG scheme, but the difference in the relative local errors of 37 

the two schemes will decrease when using a higher-order spatial scheme, i.e., from second-order to fourth-order 38 

in space. Moczo et al. (2011) also determined that the insufficient accuracy of the CG scheme at higher P-wave 39 

to S-wave speed ratios can be compensated for by using a higher spatial sampling ratio; i.e., a smaller grid size. 40 

This means that a CG scheme with a sufficiently small grid size will be as precise as the SG scheme or better, 41 

2

Solid Earth Discuss., https://doi.org/10.5194/se-2018-48
Manuscript under review for journal Solid Earth
Discussion started: 11 June 2018
c© Author(s) 2018. CC BY 4.0 License.



 

 

even if the P-wave to S-wave speed ratio is high. The computational cost of the SG scheme is significantly 1 

higher than that of an equal-sized CG scheme, because two variables (velocity and stress) must be calculated in 2 

the SG scheme and only one variable (displacement) must be computed in the CG scheme. 3 

Reflection from the artificial boundaries introduced by the limited computational area is another numerical 4 

source of error, which can be eliminated with a wave field modeling algorithm. Over the past thirty years, many 5 

techniques have been developed for boundary processing: paraxial conditions (Clayton and Engquist, 1977; 6 

Reynolds, 1978; Higdon, 2012), the sponge boundary (Cerjan et al., 1985; Sochacki et al., 1987), the perfectly 7 

matched layer (PML) (Berenger, 1994), and the hybrid absorbing boundary conditions (hybrid ABC) (Ren and 8 

Liu, 2012). Among these, the PML is one of the most efficient and most commonly used methods. The PML 9 

was first introduced for boundary processing of electromagnetic wave equation modeling, after which, it was 10 

applied to the elastic-dynamic problem (Chew and Liu, 1996) and acoustic simulations (Liu and Tao, 1998). 11 

Many modified versions of the PML, such as the convolutional PML (Komatitsch and Martin, 2007), were 12 

subsequently proposed. Gao et al. (2017) compared most of the typical artificial absorbing boundary processing 13 

approaches for use with acoustic wave equations and came to the conclusion that a 20-layer PML is ideal for 14 

most practical applications using general size models, even in the presence of strong nearly grazing waves, 15 

which demonstrates the high performance and efficiency of the PML approach. 16 

In the field of real wave field simulation, most researchers are devoted to unifying the format of the 17 

boundary processing algorithm and the wave equation within the computational region. The classic PML is 18 

naturally formulated based on the first-order wave equations for velocity and stress (Collino and Tsogka, 1998), 19 

which has proven to be very efficient. It is easy to integrate PML boundary processing into a SG finite-20 

difference algorithm. So some scholars use the SG scheme in the computational region to match the PML 21 

equations, while for many CG-based schemes, they need to adopt other boundary processing methods, such as 22 

the hybrid ABC method. However, in recent years, some scholars have also made efforts to formulate a PML 23 

for a second-order system to match the second-order wave equation. Komatitsch and Tromp (2003) 24 

reformulated the classic PML conditions in order to use it with numerical schemes that are based on the elastic 25 

wave equation written as a second-order system with displacement. Grote and Sim (2010) proposed a PML 26 

formulation for the acoustic wave equation in its standard second-order form, while Pasalic and McGarry (2010) 27 

extended the convolutional PML to accommodate the second-order acoustic wave equation. Nevertheless, all 28 

of these second-order PML formulations require the derivation of complex formulas, the introduction of 29 

auxiliary variables, and the modification of existing second-order numerical codes in order to handle the first-30 

order equations describing the auxiliary variables, which increases the computational cost and complexity. 31 

In order to preserve the original efficiency of the PML boundary processing method and the accuracy and 32 

efficiency of the CG scheme, it is worth trying to integrate the classic first-order PML algorithm into the CG 33 

finite-difference scheme in a second-order system, and make it easy to implement. In this paper, we propose a 34 

new boundary matched algorithm that uses a CG finite-difference scheme within a limited computational area 35 

and an SG finite-difference scheme in a PML area. Our approach enables the inner area and the PML condition 36 

to be independent during computation, while preserving the individual advantages of the two methods. The 37 

algorithm matches the computational area and the absorbing boundary layers simply by point updating along 38 

the sides of the computational area and avoids complex formula conversion. Thus, none of the original formulas 39 

of the CG scheme or the PML equations are modified and no unnecessary variables are added. The assessment 40 

of the proposed algorithm is composed of two parts. First, we compared the accuracy and efficiency of the 41 
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proposed algorithm with those of the classic SG PML method (SG scheme both in computational area and PML 1 

area), which proved the rationality of our decision to use the CG scheme in the computational area. To be closer 2 

to the actual underground medium, a medium with a linearly increasing velocity gradient was selected for the 3 

experiment. The experimental results indicate that the accuracy of the two methods for equal grid sizes is almost 4 

equal, but the efficiency of our method is approximately 30–50 % higher than that of the classic SG PML 5 

method. Next, the proposed algorithm was evaluated by comparing its absorption efficiency and computational 6 

cost with those of the classic SG PML method, the second-order PML method (CG scheme both in 7 

computational area and PML area) introduced by Pasalic and McGarry (2010), and the hybrid ABC method 8 

(CG scheme in computational area and hybrid ABC scheme in boundary area) introduced by Ren and Liu (2012). 9 

The numerical experimental results indicate that our algorithm provides an excellent absorption effect, is more 10 

efficient, and is easier to implement. 11 

2. Methodology  12 

Although the elastic wave equation can describe the propagation of seismic waves more comprehensively, 13 

modeling an elastic wave field is complex and computationally expensive. In practice, the acoustic wave 14 

equation is also popularly used to approximate seismic wave propagation. For the convenient error analysis of 15 

these methods, we consider a scalar wave field 𝑝  propagating through an unbounded three-dimensional 16 

medium where the wave field satisfies Eq. (1) (Engquist and Runborg, 2003). 17 

𝜕2𝑝

𝜕𝑥2 +
𝜕2𝑝

𝜕𝑦2 +
𝜕2𝑝

𝜕𝑧2 =
1

𝑐2 ∙
𝜕2𝑝

𝜕𝑡2                                                           (1) 18 

Where the wave field 𝑝 is a function of the space variables x, y, z and the time variable t, and c is sound velocity 19 

of the medium. Numeric modeling of Eq. (1) is expressed as follows. 20 

2.1 Conventional-grid finite-difference scheme 21 

The discretization of the acoustic wave equation (1) with a 2M-order finite-difference scheme is (Chu and 22 

Stoffa, 2012) 23 

𝑝𝑖,𝑗,𝑘
𝑛+1 = 2𝑝𝑖,𝑗,𝑘

𝑛 − 𝑝𝑖,𝑗,𝑘
𝑛−1 +

𝑐2∆𝑡2

∆𝑥2 [𝑐0𝑝𝑖,𝑗,𝑘
𝑛 + ∑ 𝑐𝑚(𝑝𝑖−𝑚,𝑗,𝑘

𝑛 + 𝑝𝑖+𝑚,𝑗,𝑘
𝑛 )𝑀

𝑚=1 ]  24 

+
𝑐2∆𝑡2

∆𝑦2 [𝑐0𝑝𝑖,𝑗,𝑘
𝑛 + ∑ 𝑐𝑚(𝑝𝑖,𝑗−𝑚,𝑘

𝑛 + 𝑝𝑖,𝑗+𝑚,𝑘
𝑛 )𝑀

𝑚=1 ]  25 

+
𝑐2∆𝑡2

∆𝑧2 [𝑐0𝑝𝑖,𝑗,𝑘
𝑛 + ∑ 𝑐𝑚(𝑝𝑖,𝑗,𝑘−𝑚

𝑛 + 𝑝𝑖,𝑗,𝑘+𝑚
𝑛 )𝑀

𝑚=1 ]                                    (2) 26 

Where 𝑐𝑚  for all m are finite-difference coefficients. i, j and k denote the discrete spatial variables, and n 27 

denotes the discrete time variable. The increments ∆𝑥, ∆𝑦 and ∆𝑧 are grid spacings, and ∆𝑡 is the time step. 28 

In many applications, a regular rectangular grid with a grid spacing ∆𝑥 = ∆𝑦 = ∆𝑧 = 𝑑  is a natural and 29 

reasonable choice (Moczo et al, 2007). 30 

Numerical analyses show that grid dispersion increases with increasing grid size, but decreasing the grid 31 

size increases the computational cost. High-order finite-difference schemes are able to control this numerical 32 

dispersion using a larger grid spacing compared with low-order schemes (Tan and Huang, 2014). 33 
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Because the subscripts i, j and k used in Eq. (2) have integer values, it is convenient to define and calculate 1 

medium’s parameters and wave field p for the same grid-points, which leads to the CG scheme. The pressure 2 

source s is an additive item (Hustedt et al., 2004), i.e., it can be directly added in the corresponding equations. 3 

2.2 Boundary conditions 4 

Owing to limitations in the capacity and speed of computer facilities, the numerical simulation of a wave 5 

field can only be implemented for a limited area. The computational area is surrounded by artificial boundaries, 6 

except for the free surface. As described above, the PML boundary condition can effectively absorb the wave 7 

field reflections from the artificial boundaries in order to simulate wave field propagation in an open space. In 8 

a PML medium, the wave field p is assumed to be decomposed into sub-components. The PML formulation 9 

based on the acoustic equations is as follows (Liu and Tao, 1998): 10 

𝜕𝒗𝒙

𝜕𝑡
+ 𝛼𝑥𝑣𝑥 = −

1

𝜌

∂𝑝

𝜕𝑥
  11 

𝜕𝒗𝒚

𝜕𝑡
+ 𝛼𝑦𝑣𝑦 = −

1

𝜌

∂𝑝

𝜕𝑦
  12 

𝜕𝒗𝒛

𝜕𝑡
+ 𝛼𝑧𝑣𝑧 = −

1

𝜌

∂𝑝

𝜕𝑧
  13 

𝜕𝑝𝑥

𝜕𝑡
+ 𝛼𝑥𝑝𝑥 = −𝑐2𝜌

∂𝑣𝑥

𝜕𝑥
  14 

𝜕𝑝𝑦

𝜕𝑡
+ 𝛼𝑦𝑝𝑦 = −𝑐2𝜌

∂𝑣𝑦

𝜕𝑦
  15 

𝜕𝑝𝑧

𝜕𝑡
+ 𝛼𝑧𝑝𝑧 = −𝑐2𝜌

∂𝑣𝑧

𝜕𝑧
  16 

𝑝 = 𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧                                                                 (3) 17 

Where 𝛼𝑥 ,  𝛼𝑦 ,  𝛼𝑧  are the attenuation coefficients in the PML medium. In this paper, the attenuation 18 

coefficient was set usingthe following function (Wang, 2003) 19 

𝛼𝑖𝑗 = 𝐵 [1 − sin (
𝑗𝜋

2𝑃𝑚𝑙
)] , 𝑖 = 𝑥, 𝑦, 𝑧; 𝑗 = 0,1, … , 𝑃𝑚𝑙                                      (4) 20 

Where B is the amplitude of attenuation coefficient, i.e., the maximum value of the coefficient, which we set as 21 

400 in the numerical experiment; 𝑃𝑚𝑙  is the thickness of the PML layer. 22 

Using the SG finite-difference scheme to discretize (4), the results are as follows 23 

𝑣𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘) = 𝑣𝑥

𝑛−
1

2 (𝑖 +
1

2
, 𝑗, 𝑘) − 𝛼𝑥∆𝑡𝑣𝑥

𝑛−
1

2 (𝑖 +
1

2
, 𝑗, 𝑘)  24 

−
∆𝑡

𝜌∆𝑥
[𝑝𝑥

𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑝𝑦
𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑝𝑧

𝑛(𝑖 + 1, 𝑗, 𝑘) − 𝑝𝑥
𝑛 (𝑖, 𝑗, 𝑘) − 𝑝𝑦

𝑛(𝑖, 𝑗, 𝑘) − 𝑝𝑧
𝑛(𝑖, 𝑗, 𝑘)]  25 

𝑣𝑦

𝑛+
1

2 (𝑖, 𝑗 +
1

2
, 𝑘) = 𝑣𝑦

𝑛−
1

2 (𝑖, 𝑗 +
1

2
, 𝑘) − 𝛼𝑦∆𝑡𝑣𝑦

𝑛−
1

2 (𝑖, 𝑗 +
1

2
, 𝑘)  26 

−
∆𝑡

𝜌∆𝑦
[𝑝𝑥

𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑝𝑦
𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑝𝑧

𝑛(𝑖, 𝑗 + 1, 𝑘) − 𝑝𝑥
𝑛(𝑖, 𝑗, 𝑘) − 𝑝𝑦

𝑛(𝑖, 𝑗, 𝑘) − 𝑝𝑧
𝑛(𝑖, 𝑗, 𝑘)]  27 

𝑣𝑧

𝑛+
1

2 (𝑖, 𝑗, 𝑘 +
1

2
) = 𝑣𝑧

𝑛−
1

2 (𝑖, 𝑗, 𝑘 +
1

2
) − 𝛼𝑧∆𝑡𝑣𝑧

𝑛−
1

2 (𝑖, 𝑗, 𝑘 +
1

2
)  28 

−
∆𝑡

𝜌∆𝑧
[𝑝𝑥

𝑛(𝑖, 𝑗, 𝑘 + 1) + 𝑝𝑦
𝑛(𝑖, 𝑗, 𝑘 + 1) + 𝑝𝑧

𝑛(𝑖, 𝑗, 𝑘 + 1) − 𝑝𝑥
𝑛 (𝑖, 𝑗, 𝑘) − 𝑝𝑦

𝑛(𝑖, 𝑗, 𝑘) − 𝑝𝑧
𝑛(𝑖, 𝑗, 𝑘)]  29 

𝑝𝑥
𝑛+1(𝑖, 𝑗, 𝑘) = 𝑝𝑥

𝑛(𝑖, 𝑗, 𝑘) − 𝛼𝑥∆𝑡𝑝𝑥
𝑛(𝑖, 𝑗, 𝑘)−

𝑐2𝜌∆𝑡

∆𝑥
[𝑣𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗, 𝑘) − 𝑣𝑥

𝑛+
1

2 (𝑖 −
1

2
, 𝑗, 𝑘)]  30 

𝑝𝑦
𝑛+1(𝑖, 𝑗, 𝑘) = 𝑝𝑦

𝑛(𝑖, 𝑗, 𝑘) − 𝛼𝑦∆𝑡𝑝𝑦
𝑛(𝑖, 𝑗, 𝑘)−

𝑐2𝜌∆𝑡

∆𝑦
[𝑣𝑦

𝑛+
1

2 (𝑖, 𝑗 +
1

2
, 𝑘) − 𝑣𝑦

𝑛+
1

2 (𝑖, 𝑗 −
1

2
, 𝑘)]  31 
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𝑝𝑧
𝑛+1(𝑖, 𝑗, 𝑘) = 𝑝𝑧

𝑛(𝑖, 𝑗, 𝑘) − 𝛼𝑧∆𝑡𝑝𝑧
𝑛(𝑖, 𝑗, 𝑘)−

𝑐2𝜌∆𝑡

∆𝑧
[𝑣𝑧

𝑛+
1

2 (𝑖, 𝑗, 𝑘 +
1

2
) − 𝑣𝑧

𝑛+
1

2 (𝑖, 𝑗, 𝑘 −
1

2
)]        (5) 1 

2.3 Implementation of our new boundary matched algorithm 2 

A finite-difference scheme based on a CG requires no computation of intermediate variables, and thus, the 3 

computational cost is lower than that of an SG scheme. We will show in the next section that the accuracy of 4 

the CG scheme can reach the same level as that of the SG scheme, but with lower computational costs. However, 5 

it is difficult to integrate a naturally formulated, available PML boundary processing algorithm based on an SG 6 

scheme into a CG finite-difference scheme. In this paper, we propose a new boundary matched algorithm that 7 

can seamlessly connect an SG-based PML algorithm to a CG-based numerical simulation of a seismic wave 8 

field with neither introduction of intermediary variables nor reformulation of the PML equations. The core idea 9 

of the scheme is to interface the wave field reasonably along the boundaries between the CG area and the SG 10 

absorbing layers. A detailed description of the method is given below. 11 

As shown in Fig. 1, the entire domain consists of two parts: the computational area and the boundary 12 

absorbing area. The computational area is located in the center and is surrounded by the absorbing layers. The 13 

algorithm uses a CG finite-difference scheme within the computational area and an SG finite-difference scheme 14 

within the boundary absorbing area. If we can reasonably interface the computed values of the wave field 15 

between the computational area and the boundary absorbing area, then the scheme can perform satisfactorily. 16 

For a clearer explanation, we start with a two-dimensional model. 17 

We let the computational area and the PML area overlap each other for one layer. As shown in Fig. 1, the 18 

bold red boundary line is both the outermost layer of the computational area and the innermost layer of the PML 19 

area. On this overlapped layer, both the particle velocity v and the wave field p in the PML area are calculated 20 

using the value of wave field p in the computational area. Using this method, the two areas can be connected. 21 

This avoids the introduction of intermediate variables and saves storage space. In the PML area, the values of 22 

attenuation coefficients 𝛼𝑥 and 𝛼𝑧 can be calculated using Eq. (4). When the grid points are located on the 23 

four corners of the PML area, the values of 𝛼𝑥 and 𝛼𝑧 are not zero. When they are on the left- and right-hand 24 

sides of the PML area, 𝛼𝑥 ≠ 0 and 𝛼𝑧 = 0; when they are on the upper and lower sides of the PML area, 𝛼𝑥 =25 

0 and 𝛼𝑧 ≠ 0. The specific steps of our method are as follows. 26 
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 1 

Figure 1. Schematic of the entire region. 2 

1. At the beginning of iteration, take n = 1, let the initial wave field values 𝑝𝑖,𝑗
𝑛  and 𝑝𝑖,𝑗

𝑛−1  in the 3 

computational area, the particle velocity 𝑣𝑥

𝑛−
1

2 (𝑖 +
1

2
, 𝑗)  and 𝑣𝑧

𝑛−
1

2 (𝑖, 𝑗 +
1

2
) , the wave field 𝑝𝑥

𝑛(𝑖, 𝑗)  and 4 

𝑝𝑧
𝑛(𝑖, 𝑗) in the PML area all be zero. 5 

2. Calculate the wave field 𝑝𝑖,𝑗
𝑛+1 in the computational area. In this step, we do not calculate the value of 6 

wave field 𝑝𝑖,𝑗
𝑛+1 located on the red boundary line; that is, we only calculate them on the blue boundary line and 7 

in its inner region in Fig. 1 using the two-dimensional form of Eq. (2)  8 

3. Calculate the particle velocity and wave field in the PML area layer by layer, from left to right and from 9 

top to bottom. Calculate the values of all particle velocity 𝑣𝑥

𝑛+
1

2 (𝑖 +
1

2
, 𝑗) and 𝑣𝑧

𝑛+
1

2 (𝑖, 𝑗 +
1

2
) in the PML area 10 

(including those on the red line) using the two-dimensional forms of the first and second formulas in Eq. (5). 11 

Calculate the all of the wave field values 𝑝𝑥
𝑛+1(𝑖, 𝑗) and 𝑝𝑧

𝑛+1(𝑖, 𝑗) in the PML area (including those on the red 12 

line) using the two-dimensional forms of the fourth and fifth formulas in Eq. (5). 13 

It is important to note that the particle velocities in the area between the blue and red lines is calculated 14 

from the wave field 𝑝𝑥
𝑛 (𝑖𝑟 , 𝑗𝑟 ) and 𝑝𝑧

𝑛(𝑖𝑟 , 𝑗𝑟) on the red line in the PML area and the wave field 𝑝𝑖𝑏,𝑗𝑏

𝑛  on the 15 

blue line in the computational area. Using Eq. (6), we obtain 𝑣𝑥

𝑛+
1

2 (𝑖𝑟 +
1

2
, 𝑗𝑟 ) for the line between the left-16 

hand line of the red rectangle and blue rectangle; Using Eq. (7), we obtain 𝑣𝑥

𝑛+
1

2 (𝑖𝑟 −
1

2
, 𝑗𝑟 ) between the left 17 

of right-hand line of two rectangles; for the line between the upper lines, we obtain𝑣𝑧

𝑛+
1

2 (𝑖𝑟 , 𝑗𝑟 +
1

2
) using Eq. 18 

(8); for the line between the lower lines, we obtain 𝑣𝑧

𝑛+
1

2 (𝑖𝑟 , 𝑗𝑟 −
1

2
) using Eq. (9),: 19 

𝑣𝑥

𝑛+
1

2 (𝑖𝑟 +
1

2
, 𝑗𝑟 ) = 𝑣𝑥

𝑛−
1

2 (𝑖𝑟 +
1

2
, 𝑗𝑟) − 𝛼𝑥∆𝑡𝑣𝑥

𝑛−
1

2 (𝑖𝑟 +
1

2
, 𝑗𝑟 ) −

∆𝑡

𝜌∆𝑥
[𝑝𝑖𝑏,𝑗𝑏

𝑛 − 𝑝𝑥
𝑛(𝑖𝑟 , 𝑗𝑟) − 𝑝𝑧

𝑛(𝑖𝑟 , 𝑗𝑟)]   (6)  20 

𝑣𝑥

𝑛+
1

2 (𝑖𝑟 −
1

2
, 𝑗𝑟 ) = 𝑣𝑥

𝑛−
1

2 (𝑖𝑟 −
1

2
, 𝑗𝑟) − 𝛼𝑥∆𝑡𝑣𝑥

𝑛−
1

2 (𝑖𝑟 −
1

2
, 𝑗𝑟 ) −

∆𝑡

𝜌∆𝑥
[𝑝𝑥

𝑛(𝑖𝑟 , 𝑗𝑟) + 𝑝𝑧
𝑛(𝑖𝑟 , 𝑗𝑟)−𝑝𝑖𝑏,𝑗𝑏

𝑛 ]  (7) 21 
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𝑣𝑧

𝑛+
1

2 (𝑖𝑟 , 𝑗𝑟 +
1

2
) = 𝑣𝑧

𝑛−
1

2 (𝑖𝑟 , 𝑗𝑟 +
1

2
) − 𝛼𝑧∆𝑡𝑣𝑧

𝑛−
1

2 (𝑖𝑟 , 𝑗𝑟 +
1

2
) −

∆𝑡

𝜌∆𝑧
[𝑝𝑖𝑏,𝑗𝑏

𝑛 − 𝑝𝑥
𝑛(𝑖𝑟 , 𝑗𝑟 ) − 𝑝𝑧

𝑛 (𝑖𝑟 , 𝑗𝑟 )]   (8) 1 

𝑣𝑧

𝑛+
1

2 (𝑖𝑟 , 𝑗𝑟 −
1

2
) = 𝑣𝑧

𝑛−
1

2 (𝑖𝑟 , 𝑗𝑟 −
1

2
) − 𝛼𝑧∆𝑡𝑣𝑧

𝑛−
1

2 (𝑖𝑟 , 𝑗𝑟 −
1

2
) −

∆𝑡

𝜌∆𝑧
[𝑝𝑥

𝑛(𝑖𝑟 , 𝑗𝑟) + 𝑝𝑧
𝑛(𝑖𝑟 , 𝑗𝑟)−𝑝𝑖𝑏,𝑗𝑏

𝑛 ]    (9) 2 

After calculating the complete PML area, let the value of the wave field 𝑝𝑖,𝑗
𝑛+1  on the red line in the 3 

computational area be equal to the sum of the wave field 𝑝𝑥
𝑛+1(𝑖𝑟 , 𝑗𝑟) and 𝑝𝑧

𝑛+1(𝑖𝑟 , 𝑗𝑟) on the red line in the 4 

PML area. 5 

4. Update the value of 𝑝𝑖,𝑗
𝑛−1 with the value of 𝑝𝑖,𝑗

𝑛 , and update the value of 𝑝𝑖,𝑗
𝑛  with the value of 𝑝𝑖,𝑗

𝑛+1; 6 

then, let n = n + 1. 7 

5. Repeat steps 2–4 until n reaches the required time length. 8 

The two-dimensional algorithm described above can easily be generalized to three-dimensional. In the 9 

three-dimensional model, we need to add a particle velocity component 𝑣𝑦 and a space position label k. The 10 

red and blue boundary lines become the red and blue boundary surfaces, respectively. In addition, the 11 

computational area becomes a cube surrounded by the PML area. 12 

3. Performance analysis 13 

As described in the Introduction, the errors in the wave field numerical model are mainly caused by 14 

differential dispersion and reflected waves that are not fully absorbed by the boundary processing algorithm. In 15 

order to verify the validity of our algorithm, we used a variety of models to compare the computational accuracy, 16 

the efficiency of the absorption of the reflected waves, and the computational efficiency of the proposed 17 

algorithm to the other methods. 18 

3.1 Computational accuracy formula 19 

In order to obtain a more convincing result when comparing the computational accuracy, we used a 20 

constant-gradient velocity model, the velocity of which increases linearly with depth. This model is closer to 21 

the actual velocity distribution of an underground medium than a homogeneous model. We calculated the 22 

relative error between our method and the classic SG PML method using the analytical solutions for different 23 

grid spacings and the order of difference, and then, we performed a comparative analysis of the two methods. 24 

The relative error between the two methods and the analytical solution is defined by the following time function: 25 

error(t) = 20log |
𝑝(𝑡)−𝑝𝑎𝑛𝑎𝑙(𝑡)

max [𝑝𝑎𝑛𝑎𝑙(𝑡)]
|                                                    (10) 26 

Where 𝑝(𝑡) represents the value of wave field calculated by the numerical methods at a receiving point, and 27 

𝑝𝑎𝑛𝑎𝑙(𝑡) is the value of wave field calculated by theanalytic solution at the same receiving point. 28 

For the two-dimensional scalar equation (1), the wave field analytic solution for a homogeneous medium 29 

can be obtained from the integral form of the three-dimensional solution using the dimension reduction method 30 

(Cerveny, 2001). The velocity distribution is 𝑐(𝑧) = 𝑐(𝑧0)
1+𝛾𝑧

1+𝛾𝑧0
= 𝑐(0)(1 + 𝛾𝑧), where 𝑧0 is the depth of 31 

source, 𝑐(𝑧0) is the velocity of the source layer, 𝑐(0) is the velocity of the layer z = 0, and γ =
1

ℎ
, where 32 

𝑐(−ℎ) = 0. When the line source 𝑠 = δ(𝑡 − 𝑡0)δ(𝑥 − 𝑥0)δ(𝑧 − 𝑧0) is located at (𝑥0, 𝑧0), and the density in 33 
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the method of Sanchez-Sesma et al. (2001) is a constant, a two-dimensional scalar Green's function can be 1 

obtained by 2 

G(𝑥, 𝑧, 𝑡) ≈ Λ ∙
𝐻(𝑡−𝑡0−𝜏)

2𝜋√(𝑡−𝑡0)2−𝜏2
                                                        (11) 3 

Where Λ = √
1+γ𝑧0

1+𝛾𝑧
∙

c(𝑧0)τ

𝑅𝑤
. 4 

𝐻(𝑡) is the Heaviside step function (equal to 0 when t<0 and equal to 1 when t>0), For fixed t, the radius 5 

𝑅𝑤 of the wavefront circle is 𝑅𝑤 = (𝑧0 + ℎ)sinh (𝛾𝑐(0)𝜏) and the traveltime 𝜏 can be computed by means 6 

(Cerveny, 2001) of 𝜏 = |
1

𝛾𝑐(0)
𝑎𝑟𝑒𝑐𝑜𝑠ℎ[1 +

(𝛾𝑐(0)𝑟)2

2𝑐(𝑧)𝑐(𝑧0)
]|, 𝑟 = √(𝑥 − 𝑥0)2 + (𝑧 − 𝑧0)2. This is an approximate 7 

solution, but usually the error is less than 1% (Sanchez-Sesma et al., 2001). In the next numerical experiment, 8 

we use a symmetric Ricker wavelet with a peak frequency of 20 Hz as the source. In this paper, the expression 9 

is usually 𝑠(𝑡) = {1 − 2[20𝜋(𝑡 − 𝑡0 − 1/20)]2}𝑒−[20𝜋(𝑡−𝑡0−1/20)]2
; and t0 is equal to 200 ms. The final result 10 

of the analytic solution is 11 

𝑝𝑎𝑛𝑎𝑙(𝑥, 𝑧, 𝑡) = G(𝑥, 𝑧, 𝑡) ∗ δ(𝑥 − 𝑥0)δ(𝑧 − 𝑧0)𝑆(𝑡)                                    (12) 12 

3.2 Absorption efficiency formula of the reflected waves 13 

When comparing the absorption efficiency, we used three different geological models to determine the 14 

reflected wave absorption effect of our algorithm: the homogeneous, constant-gradient velocity and the 15 

Marmousi models. We compared the absorption effects of our algorithm with the classic SG PML method, the 16 

second-order PML method, and the hybrid ABC method using the same conditions to prove whether our 17 

algorithm can effectively combine the CG scheme with the SG scheme PML boundary condition and achieve 18 

the same or better effect as other methods do. In the computational area, the reflection coefficient R of a 19 

receiving point is defined as 20 

𝑅 = 20log|
max [𝑝(𝑡)−𝑝𝑟𝑒𝑓(𝑡)]

max[𝑝𝑟𝑒𝑓(𝑡)]
|                                                       (13) 21 

Where the wave field value 𝑝(𝑡) is calculated by the numerical methods at a receiving point, and 𝑝𝑟𝑒𝑓 (𝑡) is 22 

the wave field value that has no boundary reflection on the same receiving point calculated using the numerical 23 

methods, which can be obtained by expanding the model. The value of R reflects the reflected wave absorption 24 

effect of the algorithm. The smaller the R value, the better the absorption effect. 25 

3.3 Computational efficiency index 26 

In the comparison of the computational accuracy and efficiency of the absorption of the reflected waves, 27 

we determined the computation time of the three methods separately, which can reflect the advantages and 28 

disadvantages of all of the methods in terms of the computational efficiency. 29 

4. Numerical experiment 30 

Based on the discussion of the performance analysis, in this section, we present the results of the numerical 31 

experiments. All of the numerical experiments were run on a desktop personal computer with a 3.40 GHz Intel 32 
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Core i5-3570 processor, 32 G of DDR3 memory, on a 64-bit Windows 7 operating system, using algorithmic 1 

software written in C ++. 2 

4.1 Computational accuracy and computation time 3 

As shown in Fig. 2, the constant-gradient velocity model has a size of 6000 m×6000 m, a velocity 4 

distribution of c = 500 m/s for z = 0 m and c = 5300 m/s for z = 6000 m, and a velocity gradient of 0.8. In order 5 

to determine the stability of the differential form throughout the computational process, the time step was set 6 

as 0.001 s and the total simulation time as 10 s. The sources are located in the middle of the model (3000 m, 7 

3000 m), and the three receiving points are located at (600 m, 1800 m), (1800 m, 1800 m), and (3000 m, 1800 8 

m). We compared the errors of the numerical solution and the analytical solution at the receiving points of the 9 

method we proposed with the classic SG PML methods. The number of PMLs is set as 10. Figure 3 and 4 show 10 

the comparison of the analytical solutions at the three receiving points of the proposed method (second-order 11 

CG scheme in the computational area) and the classic SG PML method (second-order SG scheme in the 12 

computational area) when the grid spacing (d) is 12 and 10, respectively. Figure 5 shows the relative errors 13 

between the analytical solutions and the two methods for the conditions described above where the relative 14 

error was calculated using Eq. (10) 15 

 16 

Figure 2. Velocity profiles in depth and the distribution of source and receiving points. 17 
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 1 

 2 

Figure 3. Comparison of the analytical solution (red solid line) with the proposed (second-order CG scheme) 3 

and classic SG PML methods (second-order SG scheme) (blue dotted line) at different receiving points, d = 12 m. 4 

(a) Proposed method at receivers 1, 2, and 3 for the first two seconds; (b) proposed method at receivers 1, 2, and 3 5 

after two seconds; (c) classic SG PML method at receivers 1, 2, and 3 for the first two seconds; and (d) classic SG 6 

PML method at receivers 1, 2, and 3 after two seconds. 7 
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 2 

Figure 4. d = 10 m; the rest is the same as in Fig. 3. 3 
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1 

 2 

Figure 5. Comparison of the relative errors between the analytical solutions and the proposed method 3 

(second-order CG scheme) (red solid line) or the classic SG PML method (second-order SG scheme) (blue 4 

dotted line) at different receiving points and different grid spacings. (a) d = 12 m, receiving points 1, 2, and 3; 5 

(b) d = 10 m, receiving points 1, 2, and 3. 6 

From Fig. 3 and 4, we can see that both of the methods have obvious errors during the first two seconds. 7 

In particular, when the grid spacing is 12 m, the error is the largest, and there is significant numerical dispersion. 8 

Reducing the grid spacing can reduce the error and the dispersion. When the grid spacing is 10 m, the result 9 

improves. In addition, the results for a longer simulation time also prove the numerical stability of our method. 10 

Further comparison of the relative error curves shown in Fig. 5 indicates that although neither method is 11 

particularly good, the relative errors of their analytical solutions are almost the same. 12 

In theory, the error of the numerical solution can be reduced by using a higher-order difference. We 13 

compared the experimental results of the proposed method (fourth-order CG scheme in the computational area) 14 

and classic SG PML methods (fourth-order SG scheme in the computational area) with the analytic solution, as 15 

shown in Fig. 6-8. 16 
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 1 

 2 

Figure 6. Comparison of the analytical solution (red solid line) with the proposed (fourth-order CG scheme) 3 

and classic SG PML methods (fourth-order SG scheme) (blue dotted line) at different receiving points and d = 12 4 

m. (a) Proposed method at receivers 1, 2, and 3 during the first two seconds; (b) proposed method at receivers 1, 2, 5 

and 3 after two seconds; (c) classic SG PML method at receivers 1, 2, and 3 during the first two seconds; and (d) 6 

classic SG PML method at receivers 1, 2, and 3 after two seconds. 7 
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 2 

Figure 7. d = 10 m; the rest is the same as in Fig. 6. 3 
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 2 

Figure 8. Comparison of the relative errors between the analytical solutions and the proposed method 3 

(fourth-order CG scheme) (red solid line) or the classic SG PML method (fourth-order SG scheme) (blue dotted 4 

line) at different receiving points and different grid spacings. (a) d = 12 m, receiving points 1, 2, and 3; (b) d = 5 

10 m, receiving points 1, 2, and 3. 6 

From Fig. 6 and 7, we can see that when the fourth-order difference is used, the relative errors between the 7 

analytical solution and both methods are significantly reduced compared with when the second-order difference 8 

is used. In addition, as with the second-order result above, the relative error also decreases as the grid spacing 9 

decreases. Figure 8 illustrates the fact that the relative error curves of our algorithm and the classic SG PML 10 

method are also very similar for the fourth-order difference, In addition, it is difficult to distinguish the 11 

advantages and disadvantages of the two algorithms. Although the results of the two methods still exhibit a 12 

small error at this time, we can continue to improve the difference order or we can reduce the grid spacing to 13 

reduce the error, but the laws of the two methods are the same. 14 
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 2 

Figure 9 Comparison of the analytical solutions of the proposed (tenth-order CG scheme) (red solid line) 3 

and the classic SG PML methods (tenth-order SG scheme) (blue dotted line) at different receiving points, d = 4 

10 m. (a) Proposed method at receivers 1, 2, and 3 during the first two seconds; (b) proposed method at receivers 5 

1, 2, and 3 after two seconds; (c) classic SG PML method at receivers 1, 2, and 3 during the first two seconds; 6 

and (d) classic SG PML method at receivers 1, 2, and 3 after two seconds. 7 
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 1 

Figure 10. Comparison of the relative errors between the analytical solutions and the proposed method 2 

(tenth-order CG scheme) (red solid line) or the classic SG PML method (tenth-order SG scheme) (blue dotted 3 

line) at different receiving points and different grid spacings. d = 10 m, receiving points 1, 2, and 3. 4 

In Fig. 9 and 10, we adopt a tenth-order difference scheme and d = 10 m. At this time, the numerical results 5 

are very close to the analytical solution and the relative error is very low. Based on this, we can conclude that 6 

the accuracies of the proposed method and the classic SG PML method for the same conditions with a constant-7 

gradient velocity are similar. Meanwhile, it also demonstrates an additional advantage of our method. When the 8 

computational area and the PML area are independent of each other, we can easily optimize the numerical 9 

algorithm of the computational area to improve the accuracy of the algorithm. When the grid spacing and the 10 

order of difference are appropriate, our method yields the expected results. Because our method uses the CG 11 

scheme in the computational area, the experimental results also show that in the scalar wave field simulation, 12 

the accuracy of the SG scheme is not higher than that of the CG scheme. This conclusion is in agreement with 13 

the experimental results of the elastic wave field simulated by Moczo et al. (2011) at a low P-wave to S-wave 14 

speed ratio (Vp/Vs=1.42). 15 

Table 1 presents the computation times of the two methods at different grid spacings and difference orders. 16 

The efficiency percentage is the total computation time of our method divided by the total computation time of 17 

the SG method. The total computation time of our method is only 57–70 % that of the classic SG PML method. 18 

It is noteworthy that the result of our method for the fourth-order difference and a grid spacing of 12 m is much 19 

better than that of the classic SG PML method for the second-order difference and a 10 m grid spacing, while 20 

the former computation time is only 53.3 % of the latter. Therefore, for the same computation time as the classic 21 

SG PML method, our method always achieves a higher accuracy for a smaller grid spacing and a higher-order 22 

difference. We obtained these conclusions in a constant-gradient velocity medium. Of course, these conclusions 23 

also apply to other inhomogeneous mediums. Therefore, the algorithm we propose works well when the CG 24 

scheme is used in the computational area. Next, we discuss the absorption efficiency of the reflected waves of 25 

our method in a series of simple and complex models. 26 

Table 1. Computation time for our and the classic SG PML methods. 27 

condition Our method 
The classic SG PML 

method 
Efficiency percentage 

Second-order  

d=12m  
10m 19sec 15m 17sec 67.5% 

Second-order  

d=10m 
14m 41sec 21m 01sec 69.8% 

fourth-order  

d=12m 
11m 13sec 17m 56sec 62.5% 
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fourth-order  

d=10m 
16m 58sec 25m 54sec 64.3% 

tenth-order  

d=12m 
18m 20sec 31m 20sec 58.5% 

tenth-order  

d=10m 
25m 48sec 44m 54sec 57.4% 

4.2 Absorption efficiency and computation time 1 

First, we used a two-dimensional homogeneous model to verify the reflected wave absorption efficiency 2 

of our new boundary matched algorithm. As shown in Fig. 11, the model size is 2000 m×2000 m at a velocity 3 

of c = 2500 m/s, and a grid spacing of 10 m. The source is the same as previously described and is located at 4 

(1000 m, 1000 m) with a time step of 0.001 s and a total simulation time of 1.5 s. Two hundred and one receiving 5 

points are evenly distributed on a horizontal line with a depth of 500 m, and the distance between each receiving 6 

point is set as 10 m. In Fig. 12, we compared the receiving point records of our method, the classic SG PML 7 

method, the second-order PML method, and the hybrid ABC method for a different number of absorbing layers . 8 

In general, the amplitude of the reflected wave will be reduced to less than 1% of that of the normal wave field 9 

after the boundary conditions are processed. Thus, in order to illustrate the reflected wave more clearly, we set 10 

the range of the color bar of the wave field to be −0.001 to 0.001. For further comparison, we also calculated 11 

the value of the reflection coefficient R using Eq. (13) and plotted the corresponding curve in Fig. 13. 12 

 13 

Figure 11. Velocity profiles with depth and the location of source and receiving points. 14 

 15 
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 1 

 2 

Figure 12. Receiving point records of the four methods for a different number of absorbing layers: (a) 0 3 

absorbing layers; (b) 10 absorbing layers; and (c) 20 absorbing layers. 4 

 5 

Figure 13. Values of the absorption coefficient R at each receiving point for our method (red line), the 6 

classic SG PML method (black line), the second-order PML method (blue line), and the hybrid ABC method 7 

(green line): (a) 10 absorbing layers; and (b) 20 absorbing layers. 8 

As can be seen in Fig. 12 and 13, all of the four methods can absorb the reflected waves to a certain degree. 9 

For the same number of absorbing layers, the absorption performance of our method and that of the classic SG 10 

PML method are almost the same and both methods are superior to the other two methods, while the hybrid 11 

ABC method is the worst. Increasing the number of absorbing layers can improve the absorption effect of the 12 
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four methods. In addition, the 20-layer, second-order PML method performs similarly to the 10-layer proposed 1 

method and the 10-layer classic SG PML method. This indicates that the second-order PML method always 2 

requires more absorbing layers than the first-order PML does. 3 

Taking into account the fact that the homogeneous model is relatively simple and is quite different from 4 

the actual distribution of an underground medium, the second model that we use, is the constant-gradient 5 

velocity model, as shown in Fig. 14. The velocity is 1500 m/s at z = 0 m and 3500 m/s at z = 2000 m, and the 6 

velocity gradient is 1. The source and receiving point locations are exactly the same as those in the first 7 

homogeneous model. Figure 15 and 16 compare the receiving point records and the reflection coefficients R of 8 

the four methods for different boundary conditions. It can be seen that the absorption effect of this model is not 9 

as good as that of the homogeneous model, but the results are the same. For the same number of absorbing 10 

layers, our method has the same absorbing ability as that of the classic SG PML and performs better than the 11 

other two methods. Also, we still need to use more layers for the second-order PML method instead of using 12 

the thin method we proposed. In addition, we see that the 10-layer proposed method is much better than the 20-13 

layer hybrid ABC method. 14 

 15 
Figure 14. Velocity profiles with depth and the location of the source and receiving points. 16 

 17 
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 1 

 2 

Figure 15. Receiving point records for the four methods for a different number of absorbing layers: (a) 0 3 

absorbing layers; (b) 10 absorbing layers; and (c) 20 absorbing layers. 4 

 5 

Figure 16. Values of the absorption coefficient R at each receiving point for our method (red line), the 6 

classic SG PML method (black line), the second-order PML method (blue line), and the hybrid ABC method 7 

(green line): (a) 10 absorbing layers; and (b) 20 absorbing layers. 8 

We next compared the absorption efficiency of the four methods for a complex Marmousi model. The 9 

Marmousi model has a size of 9200 m×3000 m, a grid spacing of 12.5 m, a time step of 0.001 s, and a total 10 

recording time of 8 s. The velocity distribution is shown in Fig. 17. Taking the first shot of the Marmousi model 11 

as an example, we can see that the shot is located on the ground surface at a horizontal distance of 3000 m and 12 
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that the 185 receiving points are evenly distributed between 0–9200 m on the surface. The results in Fig. 18 1 

show that the absorption effect of our method is equal to or better than the absorption effect of the other methods. 2 

When the number of PMLs is 20, the reflected wave is relatively small. Therefore, the method we propose is 3 

also suitable for simulating complex models. 4 

 5 

Figure 17. Marmousi velocity model 6 

 7 

 8 
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 1 

Figure 18. Receiving point records for the four methods for a different number of absorbing layers: (a) 0 2 

absorbing layers; (b) 10 absorbing layers; and (c) 20 absorbing layers. 3 

Based on the above numerical experiments, although the hybrid ABC method is often used as the boundary 4 

condition of the CG-based method because it is easy to deduce its second-order form, its absorption performance 5 

is obviously worse than those of the other PML methods since it is based on a one-dimensional wave equation. 6 

Among the three PML methods, the 10-layer classic SG PML method (first-order PML is used inside) for the 7 

first-order wave equation is enough to suppress the edge reflections, while the 20-layer second-order PML 8 

method is sufficient for the second-order wave equation. However, our first-order PML method only requires a 9 

thickness of 10 grid spacings to absorb the outgoing wave entirely. It may have a significant advantage over the 10 

second-order PML method. Table 2 shows the computation times of the four methods for different numbers of 11 

absorbing layers. Among them, the computation time of our method is the shortest and that of the classic SG 12 

PML method is the longest. Given that our method uses the CG scheme in the computational area, it requires 13 

much less computation time than the classic SG PML method does. In addition, the second-order PML method 14 

requires the transformation of the original first-order PML equation into a second-order form. The required 15 

complex formulas and extra variables without physical meaning increase the computation time. In addition, our 16 

method naturally implements high-order temporal discretization if necessary, while the second-order PML 17 

method does not. Therefore, our method is ideal for seismic wave forward modeling. 18 

 19 

Table 2. Computation times for the four methods. 20 

Condition Our method 
Classic SG 

PML method 

Second-order 

PML method 
Hybrid ABC method 

homogeneous model 

PML=10 
20 sec 28 sec 24 sec 20 sec 

homogeneous model 

PML=20 
24 sec 34 sec 28 sec 25 sec 

constant-gradient 

velocity model 

PML=10 

21 sec 30 sec 26sec 21 sec 
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constant-gradient 

velocity model 

PML=20 

25 sec 35 sec 30 sec 26 sec 

Marmousi model 

PML=10 
6 m 57 sec 10 m 31 sec 8 m 20 sec 7 m 14 sec 

Marmousi model 

PML=20 
6 m 05 sec 9 m 05 sec 7 m 18 sec 6 m 25 sec 

4.3 Three-dimensional homogeneous model 1 

In order to facilitate the experiments and comparative analyses, we used the two-dimensional models 2 

described in the above numerical experiments. To further illustrate the effectiveness of our method, Fig. 19 3 

shows the experimental results of this method for a three-dimensional homogeneous velocity model. The model 4 

size is 1000 m×1000 m, the grid spacing is 10 m, and the velocity is 2000 m/s. The source is located at (500 m, 5 

500 m, 500 m) with a time step of 0.001 s. Figure 19 shows snapshots of the wave field at different times. From 6 

this we find that when the number of PMLs is 20, the wave field record is very clear, and almost no reflected 7 

waves are seen. 8 

 9 

 10 
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Figure 19. Wave field snapshots with different PML at different time: (a) PML=0 at 250 ms, 350 ms and 1 

450 ms; (b) PML=20 at 250 ms, 350 ms and 450 ms. 2 

5. Conclusions 3 

We propose a new boundary matched algorithm that effectively combines the CG scheme in the 4 

computational area and the SG scheme in the PML boundary conditions, while preserving the high 5 

computational efficiency of the CG scheme and the good absorption effect of PML boundary conditions. Our 6 

proposed method is easy to implement, and we only perform appropriate wave field matching at the grid points, 7 

which avoids complex modifications to the PML formulas and the addition of unnecessary variables. The 8 

numerical experiments of the different models indicate that our method is suitable for use with a variety of 9 

simple and complex two-dimensional and three-dimensional geological models. For the same conditions, our 10 

method can achieve similar or better accuracy and reflected wave absorption efficiency as other boundary 11 

absorption methods, but it requires less computation time. Because our method preserves the independence of 12 

the computational area and the boundary absorption area, it can also be used with other CG-based seismic wave 13 

numerical algorithms, such as the nearly analytical center difference method with PML boundary conditions, 14 

to achieve better numerical simulation accuracy. 15 

Our work is based on the numerical simulation of a scalar equation. Because the elastic wave equation 16 

includes more wave field information, it is also widely used in the numerical simulation of seismic waves. The 17 

simulation of the elastic wave equation requires more computations and greater storage capacity, while our 18 

proposed method has a small computational cost. After being properly modified, our method can be used for 19 

the numerical simulation of the elastic wave equation and is expected to significantly improve its computational 20 

efficiency, which is the next step in our work. 21 
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